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ABSTRACT

The actin filament plays a fundamental role in numerous cel-
lular processes such as cell growth, proliferation, migration,
division, and locomotion. The actin cytoskeleton is highly dy-
namical and can polymerize and depolymerize in a very short
time under different stimuli. To study the mechanics of actin
filament, quantifying the length and number of actin filaments
in each time frame of microscopic images is fundamental. In
this paper, we adopt a Convolutional Neural Network (CNN)
to segment actin filaments first, and then we utilize a mod-
ified Resnet to detect junctions and endpoints of filaments.
With binary segmentation and detected keypoints, we apply
a fast marching algorithm to obtain the number and length of
each actin filament in microscopic images. We have also col-
lected a dataset of 10 microscopic images of actin filaments
to test our method. Our experiments show that our approach
outperforms other existing approaches tackling this problem
regarding both accuracy and inference time.

Index Terms— Actin filament, Convolutional neural net-
work, Keypoint detection, Quantification analysis

1. INTRODUCTION

In biological systems, there are many different filamentous
structures playing essential roles in biological processes, and
actin filaments are one of them. Actin filaments are abundant
in all eukaryotic cells, and their functions are serving as tracks
for a motor protein called myosin, highways inside cells for
the transport of cargoes, motors for cell movement, and key
structural roles in cells. These filaments are highly dynamic
and moving differently under different stimuli. Domain ex-
perts use the number of filaments and their length as two fun-
damental metrics to study their behaviors. For example, the
distribution of average length of actin filaments can reflect the
elasticity of flexibly cross-linked actin networks. In different
biological processes, the length of actin filaments can change
accordingly. However, obtaining the length of each actin fila-
ment is a very challenging problem: (1). Microscopic images
are usually with a high level of noise, optical blurring, clut-
ter, and overexposure areas. (2). Actin filaments networks
are very dense and complex. (3). These filaments usually
share the same features with various lengths, curvatures, and

orientations, which makes it extremely hard to segment at an
instance level compared to common objects such as cars.
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Fig. 1. From left to right: original image, binary segmen-
tation, skeletonization. After skeletonization, some junction

points turn into more than one junction, which creates many
false, short filaments.

Current approaches tackling this problem are mostly
based on traditional computer vision techniques such as
contour-based approaches, and local context-based pattern
recognition approaches. The noise level of microscopic im-
ages heavily impedes the accuracy of these approaches, and
it relies on manual parameter adjustments. There have been
works utilizing CNNs to segment actin filaments and other
filamentous structures. However, none of those approaches
could segment actin filaments at the instance level and thus
obtaining the length of individual filaments.

In this paper, we approach the problem by segmenting
actin filaments and detecting junctions and endpoints using
CNNs. With the locations of junctions and endpoints, a fast
march algorithm is applied to binary segmentation to estimate
the number and length of filaments.

The contribution of this work is as follows:

e A novel framework to quantify the number and length
of actin filaments and our approach outperforms many
existing approaches.

e We modify human keypoint detection techniques and
apply them to detecting filament junctions.

e Quantitative analysis of actin filaments using a fast
march algorithm with detected junctions and filaments
segmentation.

The rest of this paper is organized as follows. Section
2 gives an overview of ways to quantify actin filaments and
related recent deep learning approaches. Section 3 details the



Fig. 2. The pipeline of our proposed approach. (a) Microscopic image of actin filaments. (b) Binary segmentation. (c) Heatmaps
of junctions and endpoints. (d) Offset maps of junctions and endpoints. (e) Prediction of junctions and endpoints. (f) Geodesic
distance map from junctions and endpoints, which are color of cyan. (g) The local maximum value of the geodesic distance
map, which is represented in blue with a pink circle. (a) to (b): We use a neural network to obtain binary segmentation. (b)
to (c),(d) and (e): Our modified Resnet takes binary segmentation results as inputs and outputs offset maps and heatmaps of
junctions and endpoints. Then we integrate (c) and (d) to obtain refined locations of these points. (e) to (f) and (g): We set
predicted keypoints as start points and utilize a fast marching algorithm to calculate the geodesic distance map. The local peak
values of the geodesic distance map can represent the half-length value of the actin filaments.

data preparation and the framework of our approach. Section
4 describes the results of our proposed approach and overall
accuracy of the length and number of actin filaments in the
dataset. Finally, the paper is summarized and concluded in
Section 5.

2. RELATED WORK

How to conduct a quantification analysis of actin filaments
has been studied for years. There are several existing ap-
proaches for quantification analysis of filamentous structures.
Some approaches require three steps: pre-processing, seg-
mentation, and extracting individual filament. In pre-process
step, many traditional image process techniques are applied
to enhance filamentous features, such as line filter transform,
orientation filter transform [1], canny edge detector [2], lin-
ear Gaussian filter [3], denoising operations [4]. These oper-
ations allow better detection of the filament traces by binary
segmentation. Global thresholding [1, 5, 3] and local adaptive
thresholding [3] are often used later for binary segmentation.
And then, individual filaments extraction step is usually based
on line segment detectors such as hough transform [2]. More-
over, in [6, 7], the authors applied a multi-scale line detector
based on linear structuring elements of different orientations
and widths to segment filaments. This strategy relies heav-
ily on the accuracy of segmentation and pre-processes tech-
niques, so it can fail to detect filaments with various thickness,
filaments curving too much, or heavy-blurred filaments.

There are a few methods identifying filaments use tem-
plate matching [4, 8, 9], and they require prior knowledge
about the target. For example, in [8], authors designed a
rectangle unit called ’fixel’ with a fixed length and width
to describe segments of filaments, then these ’fixels’ are re-
grouped by their orientation. However, the performance of
template-based methods depends on template selections, and
these methods do not resolve the problem of detecting various
thickness filaments and junctions areas.

Xu et al.[10] proposed an active contour-based method,
which achieves a robust segmentation result by incorporating
stretching open active contours, regulated sequential evolu-
tion, and prior information of filament shape. However, this
method exhibits a high computational burden. For some im-
ages with dense filaments, it takes hours to process. Also,
manual adjustments of numerous parameters increase poten-
tial errors.

Some researchers have applied deep learning approaches
to segment filamentous structures [11, 12, 13, 14, 15]. These
deep learning based approaches have achieved remarkable
performances regard to accuracy and inference time. How-
ever, these works do not extract individual filament, which
makes it hard to obtain the number and length of filaments.
One strategy [1] to proceed quantification analysis is to skele-
tonize the binary segmentation and disconnect filaments at
junctions. Then obtain the length by calculating the length
of each disconnected component. However, as shown in Fig.
1, skeletonization can change the geometric properties of the



junction area and increase the errors.

Our proposed method utilizes neural networks to achieve
a better binary segmentation than conventional techniques do.
Inspired by [1, 16], we use techniques for human keypoint
detection to precisely detect junctions and endpoints, which
avoids drawbacks of skeletonizations. Then, we can set these
junctions and endpoints as initial points, and use a fast march-
ing algorithm [17] to calculate the geodesic distance map.
The length and quantities of filaments can be extracted from
the geodesic distance map.

3. METHODS

In this section, we describe our approach for quantifying actin
filaments. Our approach includes three parts. First, we adopt
the neural network structure and pre-trained weight in [11]
to segment actin filaments. Second, we adopt the strategy in
[16] and adapted Resnet [18] to detect junctions of filamen-
tous structures. Third, we use a fast marching algorithm from
scikit-fmm [19] to quantify filament data. Fig. 2 shows the
framework of our proposed approach.

We do not use a generalized network for both binary seg-
mentation and junction detection because we do not have la-
beled data for junctions. We synthesize a dataset for junction
detection and train our adapted Resnet with this dataset. More
details will be discussed below.

3.1. Data
3.1.1. Actin dataset

We took 10 microscopy images with a size of 1740 x 840
pixels and 17 slices in Z direction and obtained maximum
intensity projection(MIP) on Z direction of these images.

3.1.2. Synthetic dataset for keypoint detection

Fig. 3. Examples of synthetic data. Left column: Disk cen-
tered around keypoints (junctions and endpoints). Right col-
umn: short-range offsets

Keypoint detection is performed on binary segmentation
as we do not have junction and endpoint labels of the orig-

inal images. We create 10000 images with a size of 128 x
128. As shown in Fig. 3 Each image includes a maximum of
six random one-pixel width curves with a mixture of different
junction types such as three-way junction and two-way junc-
tion. After we record the junction points, we randomly dilate
those images with kernels of size 3 to 7. The dilated images
are very similar to real binary segmented actin filament im-
ages, and we will use this synthetic dataset for training.

3.2. Binary Segmentation for actin filaments

Binary segmentation is performed using the network and pre-
trained weights in [11]. We use the binary segmentation re-
sults as inputs in the next step.

3.3. Keypoint detection

(a) heatmap (b) offset map  (c) Hough score map

Fig. 4. ResNet outputs (a) heatmap and (b) offsets map.
Heatmap and offsets are aggregated via Hough voting into
(c) Hough score map. The locations of keypoints are refined
by Hough voting

To detect the junctions, we use ResNet-101 as the back-
bone, and we adopt the strategy in [16]. As shown in Fig.
4, We predict heatmaps for all keypoints (junctions and end-
points) and offset maps (two channels per keypoint for dis-
placements in the horizontal and vertical directions). Then
we utilize Hough voting to aggregate heatmaps and offsets
into a 2-D Hough score map. Then we locate keypoint by ap-
plying a maximum filter and locate the local maxima, which
should also be higher than a threshold value. During training,
we use dice-coefficient loss and L1 loss to penalize heatmaps
and offsets prediction errors.

3.4. Quantification analysis using a fast marching algo-
rithm

In our work, we use a fast marching algorithm implementa-
tion [19] to compute the geodesic distance from junctions and
endpoints. Since each path between junctions or endpoints
represents an actin filament, we set initial contours around
these keypoints. These contours grow outward with a con-
stant speed in the local normal direction until they meet other
contours or boundaries. The locations of local peak values
of the distance map are the midpoints of actin filaments, and
these local peak values are half of the length of filaments, as



Fig. 5. Junctions detected by our approach (Left) and junc-
tions detected by skeletonization (Right). The thick points
include more than one point. Our approach detects junctions
more precisely.

shown in Fig. 2. By doubling the peak values and counting
the number of peaks, we can obtain the length and numbers
of actin filaments.

4. ANALYSIS AND RESULTS

In this section, we discuss the experiments we have run, and
we compare the performance of our proposed methods against
other approaches.

We have run three experiments on our actin dataset: 1.
SOAX [10]. 2. A method adapted from [1]. This method
skeletonizes the binary segmentation first and obtains indi-
vidual filaments by extracting disconnected components after
disconnecting junctions. The binary segmentation we use for
this method is obtained by the neural network in [11], which
is the same as the one we use in the first step. 3. Our proposed
approach.

Labeling individual filaments with limited resources is
very difficult since there are hundreds of filaments in one
image. To evaluate our approach without ground truth, we
calculate the percentage difference(PD) of length, count, and
average length between our approach and other methods. The
formula of PD is as follows:

A-B
PP=aTB)n @

As shown in table 1, the difference in total length is rel-
atively low, which indicates that binary segmentation results
are similar, and the critical difference depends on the number
of filaments. As we can see from both 1 and 2, SOAX [10]
obtains a much lower count on filaments, and this is because
SOAX will group different contours to form a single actin fil-
ament by their geometric properties. SOAX works well with
long actin filaments, but actin filaments in our microscopic
images are very short and dense, and each small segment is
considered an actin filament. So the results of the proposed
approach and the method adapted from [1] are closer to man-
ual count. Also, SOAX takes hours to analyze one image due
to the contour-based approach, but our approach only takes
seconds to run one image.

Though it requires tremendous work to manually count
the filaments in each image, we only manually count the num-

Table 1. Quantitative comparison bewteen proposed ap-
proach and other approaches.

Model Method SOAX Our
adapted [10] method
from [1]

Ave total length 38687.45 | 30990.07 | 47190.65

Ave filament length | 20.62 46.58 29.49

Ave count per image | 1876.67 665 1600

PD of total length -0.066 -0.13 0

PD of ave length -0.35 0.44 0

PD of count 0.14 -1.60 0

Table 2. Count of filaments of two images using different

approaches.
Model Image No.1 | Image No.2
SOAX [10] 1147 237
Method adapted from [1] | 3245 901
Our approach 2576 818
Manually count 2210 743

ber of filaments for two images to show effectiveness of our
approach, one with high PD of the count and one with low PD
of the count. The result is shown in table 2.

Fig. 5 provides a qualitative result of junction detection.
Our proposed approach detects junctions more precisely, so
our approach can avoid counting small false segments caused
by skeletonization. The count from our proposed approach is
lower than method adapted from [1], and our result is closer
to ground truth value on the two selected images. More qual-
itative results are included in supplemental materials.

5. CONCLUSION

On our dataset of actin filaments, we combine deep learning
models and a fast marching algorithm to automate estimating
the number and length of actin filaments in microscopic im-
ages. We have shown that our approach can successfully de-
tect junctions and endpoints of actin filaments network, which
is fundamental for estimating length using a fast marching al-
gorithm. We prove that our approach is practical by compar-
ing against other approaches. The total length of our approach
is similar to that of other approaches, but the number of fil-
aments predicted by us is closer to the actual number. We
further prove that by showing that the count number of ours
is the closet to ground truth on the two manually counted im-
ages. The main limitation of this work is unable to obtain
other information such as orientation angle and curvatures,
and we plan to improve our approach to quantify other fea-
tures of actin filaments.
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